Electrical conductivity of nonideal carbon and zinc plasmas: experimental and theoretical results.

نویسندگان

  • J Haun
  • H-J Kunze
  • S Kosse
  • M Schlanges
  • R Redmer
چکیده

Electrical conductivities of nonideal carbon and zinc plasmas have been measured in this paper. The plasma is produced by vaporizing a wire placed in a glass capillary within some hundred nanoseconds. In the case of carbon, vaporization occurs with good reproducibility when utilizing a preheating system. The particle density is in the range of n=(1-10) x 10(21) cm(-3). The plasma temperature, which is obtained by fitting a Planck function to the measured spectrum, is between 7-15 kK. Plasma radius and behavior of the plasma expansion were studied with a streak, a framing or an intensified charge coupled device camera. We compare the measured electrical conductivities with theoretical results, which were obtained solving quantum kinetic equations for the nonideal partially ionized plasmas. In this approach, the transport cross sections are calculated on the level of a T-matrix approximation using effective potentials. The plasma composition is determined from a system of coupled mass action laws with nonideality corrections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpolation formula for the electrical conductivity of nonideal plasmas

On the basis of a quantum-statistical approach to the electrical conductivity of nonideal plasmas we derive analytical results in the classical low-density regime, in the degenerate Born limit, and for the contribution of the Debye-Onsager relaxation effect. These explicit results are used to construct an improved interpolation formula of the electrical conductivity valid in a wide range of tem...

متن کامل

Electrical and optical properties of a small capped (5, 0) zigzag Carbon nanotube by B, N, Ge and Sn atoms: DFT theoretical calculation

In this study we investigate the effect of atoms such as B, N, Ge and Sn on the optical and the electrical properties of capped (5, 0) zigzag carbon nanotube, using DFT calculation method. These elements were attached to the one end of the carbon nanotube. We considered four different structure designs as possible candidates for a p-n junction device. The electrical properties of these structur...

متن کامل

Electrical and optical properties of a small capped (5, 0) zigzag Carbon nanotube by B, N, Ge and Sn atoms: DFT theoretical calculation

In this study we investigate the effect of atoms such as B, N, Ge and Sn on the optical and the electrical properties of capped (5, 0) zigzag carbon nanotube, using DFT calculation method. These elements were attached to the one end of the carbon nanotube. We considered four different structure designs as possible candidates for a p-n junction device. The electrical properties of these structur...

متن کامل

Hybrid nanofluid based on CuO nanoparticles and single-walled Carbon nanotubes: Optimization, thermal, and electrical properties

The purpose of this study is to use the thermal and electrical conductivities of copper oxide nanoparticles and carbon nanotubes for the preparation of high-performance nanofluids for achieving better heat transfer properties. These nanofluids consist of a water/Ethylene Glycol solution containing single-wall carbon nanotubes (SWCNTs) and copper oxide nanoparticles (CuONPs). The effects of such...

متن کامل

Role of Interatomic Potentials in Simulation of Thermal Transport in Carbon Nanotubes

Interatomic potentials, which describe interactions between elements of nanosystems, are crucial in theoretical study of their physical properties. We focus on two well known empirical potentials, i.e. Tersoff's and Brenner's potentials, and compare their performance in calculation of thermal transport in carbon nanotubes. In this way, we study the temperature and diameter dependence of thermal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 65 4 Pt 2B  شماره 

صفحات  -

تاریخ انتشار 2002